The Roller Coaster of Antibacterial Drug Discovery and Development in an Era of Multi-Drug Resistance

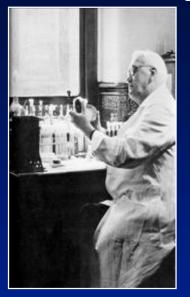
lan A. Critchley, Ph.D.

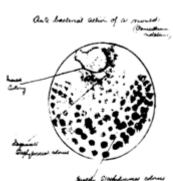
Vice President, Clinical Microbiology

Allergan, Plc

SABPA April 21, 2018 Santa Ana, CA

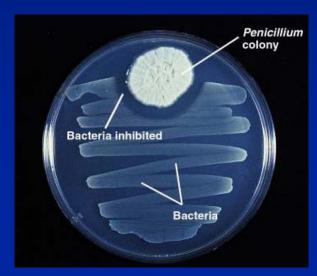
New Affiliation Spero Therapeutics, Cambridge, MA




Introduction

History	- Discovery of penicillin - Traditional Antibiotic R&D - The "Golden Era"
Challenges	 Lots of drugs vs. few targets Resistance mechanisms Difficult to discover new drugs Genomics and HTS
New Discoveries	- Approvals in 21 st Century
What's in the Pipeline?	- Development Candidates
Acceleration of Antibiotic R&D	- GAIN/Tiered Approaches

Impact of Fleming's Accidental Discovery of Penicillin


Fleming, 1928

Shately Stophydremai chra

Or a place placed with deplaced a colory of a moved appeared. After almotwo same is was near place the colored of shiply proves mean its moved colory see degree ale

Florey and Chain, 1940

Traditional Antibiotic R&D

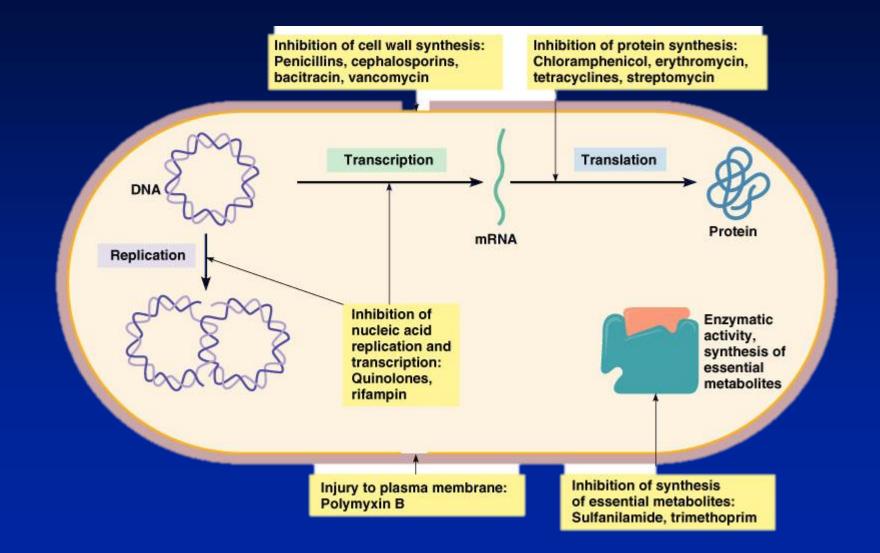
- Nearly all antibiotics used today belong to classes discovered before 1970
 - Derivatives of naturally produced antibiotics from soil streptomycetes and fungi

Only new classes to reach market since 1970

- Oxazolidinones (discovered 1978, launched 2000)
- Lipopeptides (discovered 1986, launched 2003
- Advances from improvements within antibiotic classes yielding analogs with:
 - increased potency
 - broader spectrum of activity
 - activity against resistant phenotypes

The First in Class Antibiotics: 1940-1969

Decade	Year	Agent	First in Class
	1942	Benzyl penicillin	Penicillin
1940's	1942	Gramicidin S	Peptide
1940 5	1944	Streptomycin	Aminoglycoside
	1948	Chlortetracycline	Tetracycline
	1952	Erythromycin	Macrolide
1950's	1955	Vancomycin	Glycopeptide
	1958	Colistin	Polymyxin
		Methicillin	Penicillin active vs Staph β-
	1960	Methicilin	lactamase
1960's		Metronidazole	Nitroimidazole
	1961	Trimethoprim	Dihydrofolate reductase inhibitor
	1964	Cefalothin	Cephalosporin
	1967	Nalidixic acid	Quinolone

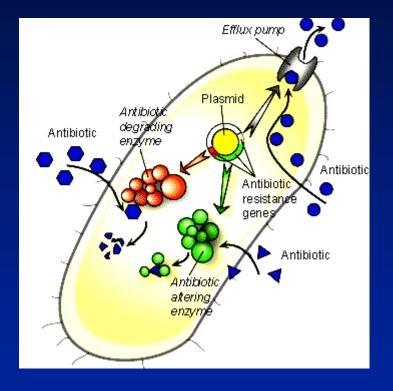

Many Antibiotics Developed in the Golden Era

Decade	Year	Agent		
1970's		Cephalexin, pivampicillin, amoxicillin, cefradine, minocycline, pristinamycin, fosfomycin, tobramycin, becampicillin, ticarcillin, amikacin, azlocillin, cefadroxil, cefamandole, cefoxitin, cefuroxime, mezlocillin, pivmecillinam, cefaclor, cefmetazole		
1980's		Cefotaxime, cefsulodin, piperacillin, amoxicillin/clavulanate, cefoperazone, cefotiam, latamoxef, netilmicin, apalcillin, ceftriaxone, ceftazidime, ceftizoxime, norfloxacin, cefonicid, cefotetan, temocillin, cefpiramide, oxfloxacin, ampicillin/sulbactam, cefixime, roxithromycin, sultamicillin		
		Imipenem/cilastatin	Carbapenem	
	1986	Mupirocin	Monoxycarbolic acid	
	1987	Ciprofloxacin Rifaximin	2nd generation quinolone Ansamycin	
1990's		Arbekacin, clarithromycin, cefdinir, cefetamet, cefpirome, cefprozil, ceftibuten, fleroxacin, loracarbef, piperacillin/tazobactam, rufloxacin, brodimoprim, dirithromycin, levofloxacin, nadifloxacin, panipenem/betamipron, sparfloxacin, cefepime, quinupristin/dalfopristin		

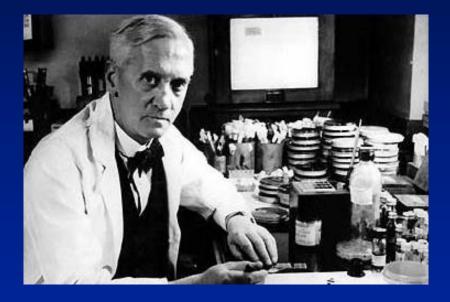
Fewer Antibiotics Approved in the 21st Century

Decade	Year	Agent	First in Class
2000's	2000	Linezolid	Oxazolidinone
	2001	Telithromycin	Ketolide
	2003	Daptomycin	Lipoglycopeptide
	2005	Tigecycline	Glycylcycline
	2005	Doripenem	
	2009	Telavancin	
2010's	2010	Ceftaroline	Cephalosporin with activity against MRSA
	2011	Fidaxomycin	Macrocyclic
	2014	Dalbavancin, Oritavancin	
	2014	Tedizolid	
	2014	Ceftolozane-tazobactam	BL/BLI
	2015	Ceftazidime-avibactam	Avibactam (DABCO) - BLI
<u> </u>	2017	Meropenem-vaborbactam	Vaborbactam (Boronic) - BLI

Most Antibiotics Directed against a Few Well Known Targets

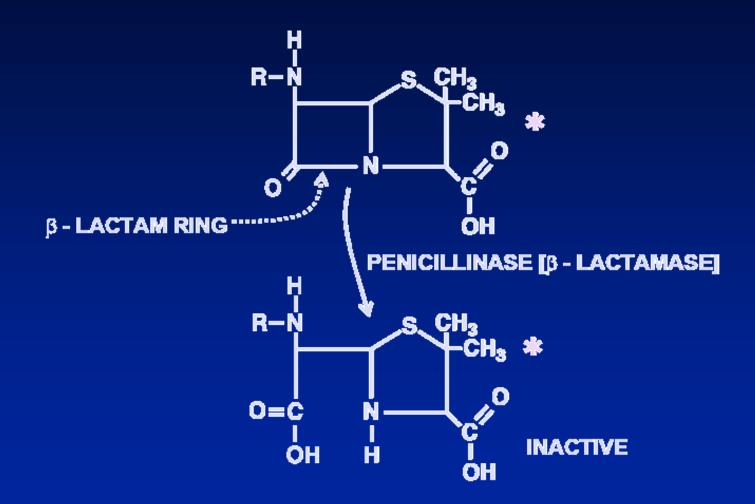


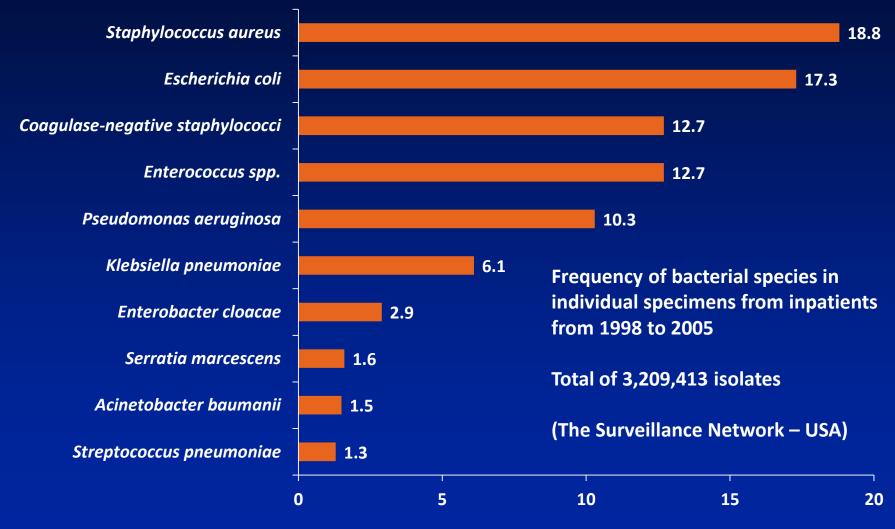
Common Pathways of Resistance


 Enzymatic degradation of the antibiotic

 Decreased uptake or accumulation of the drug

 Altered antimicrobial target


Emergence of Resistance


"It is not difficult to make microbes resistant to penicillin in the laboratory by exposing them to concentrations not sufficient to kill them and the same thing has happened in the body"

- Alexander Fleming, 1945

β-Lactamase Hydrolysis of Penicillin

Top Ten Problem Pathogens Encountered in the Hospital

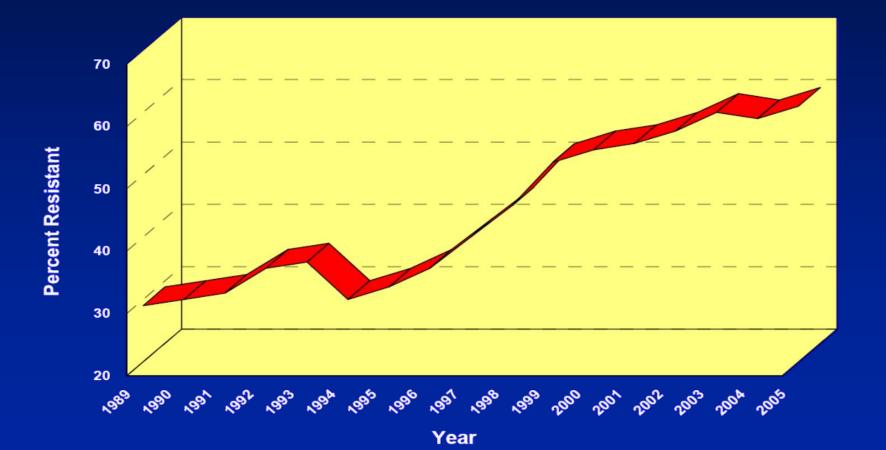
% Bacterial Isolates Encountered

History of Methicillin-Resistant Staphylococcus aureus

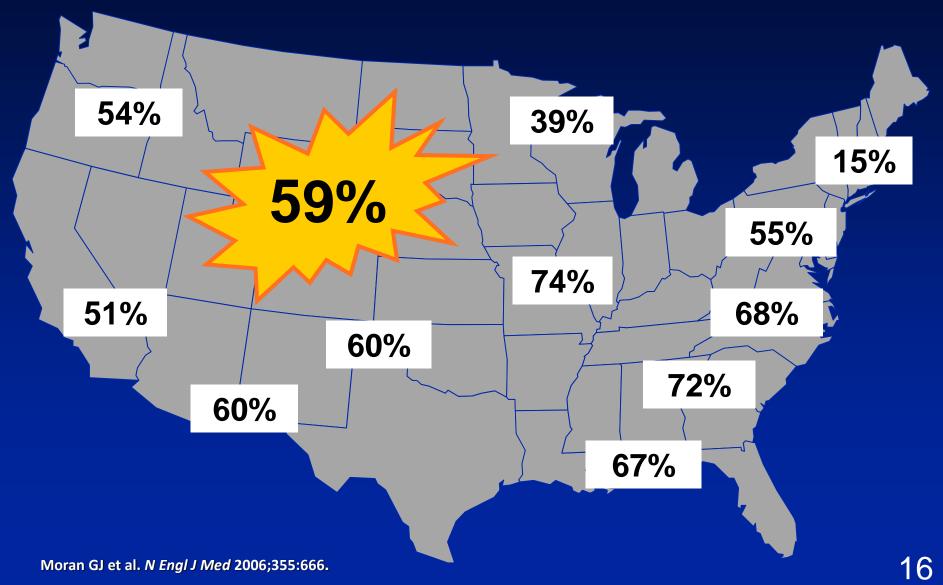
- 1959 Methicillin introduced
- 1960 Methicillin-resistant *S. aureus* identified with *mecA* gene and altered PBP2a
- 1968 First documented MRSA outbreak in U.S. at Boston City Hospital
- >1968 Progressive increase in prevalence and reports of nosocomial outbreaks
- 1980-82 Community-acquired outbreak in Detroit
- 1990-96 "Community-acquired" strains in Australia, Canada
- 1998-99 Community strain outbreaks in U.S
- 1996-2000 VISA
- 2002 VRSA

Methicillin-resistant S. aureus (MRSA)

 Lethal targets for β-lactam antibiotics are penicillinbinding proteins (PBPs)


-Transpeptidases that catalyze the formation of peptide cross-links between adjacent glycan strands during the final stages of peptidoglycan synthesis in bacteria

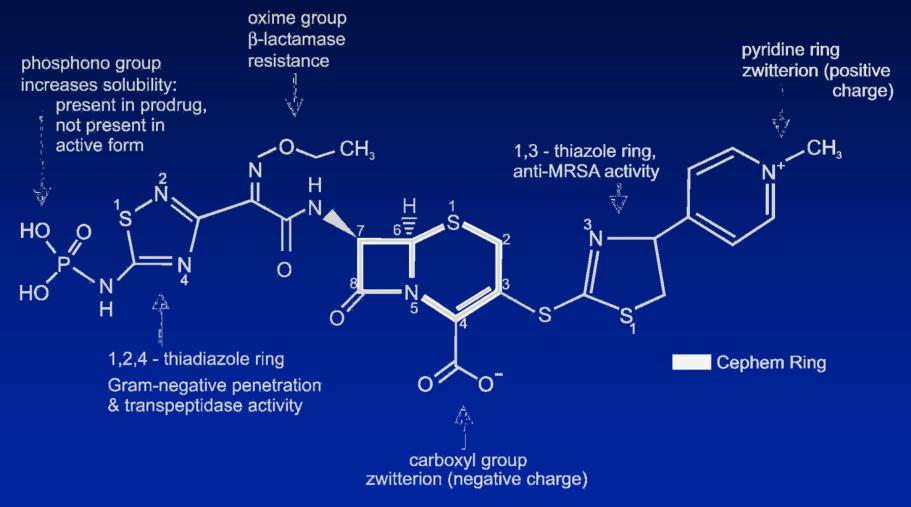
-Peptidoglycan envelopes the bacterial cell wall and is essential for growth, division and cell shape


 MRSA acquired a modified PBP encoded by mecA gene (PBP2a)

-Low affinity for most β-lactams permitting cell wall biosynthesis in presence of antibiotic

Proportion of *S. aureus* Nosocomial Infections Resistant to Oxacillin (Methicillin) Among ICU Patients

MRSA among 422 ED Patients with Skin Infections

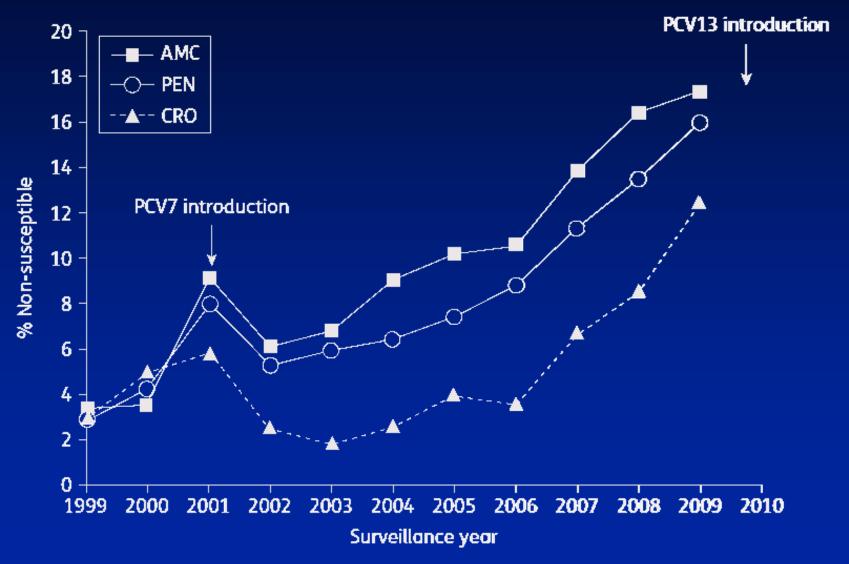


The Response to the MRSA Challenge

Approved Agents with activity against MRSA

- Vancomycin Linezolid, Tedizolid Daptomycin Tigecycline Telavancincin, Dalbavancin, Oritavancin Ceftaroline (first anti-MRSA cephalosporin approved in US and EU) Delafloxacin (first fluoroquinolone with anti-MRSA
- activity)

Structure Activity Relationships for Ceftaroline


Structure activity relationships for ceftaroline

Affinity for Modified PBPs in PRSP and MRSA

Correlation between affinity for modified PBPs and MICs

	PRSP <i>S. pneumoniae</i> 2039			MRSA Strain 67-0	
Antibiotic	MIC (µg/mL)	PBP2x IC ₅₀ (μg/mL)	Antibiotic	MIC (µg/mL)	PBP2a IC ₅₀ (μg/mL)
Ceftaroline	0.12	0.17	Ceftaroline	0.5 – 1	0.16
Ceftriaxone	1 – 2	0.64	Ceftriaxone	> 128	677
Penicillin	1 – 2	0.79	Oxacillin	128	408

β-Lactam Resistance in S. pneumoniae

What About Gram-negative Pathogens?

- Quinolones last antibiotic new class to treat Gramnegative bacilli first discovered over 40 years ago
- "For Gram-positives, we need better drugs. For Gram-negatives, we need <u>ANY</u> drugs" John Bartlett, MD

ESKAPE BACTERIA

Enterococcus faecium (VRE)

Staphylococcus aureus (MRSA)

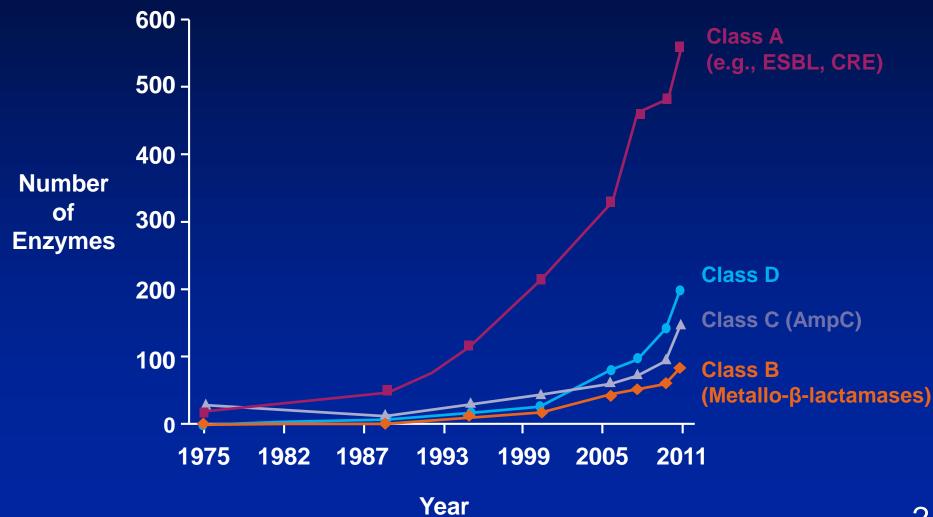
Klebsiella pneumoniae

Acinetobacter baumannii

Pseudomonas aeruginosa

Enterobacter species

Gram-negative Unmet Need


Gram-Negative Resistance: Four Major Areas of Need

Resistant Gram-negative Phenotype	CDC Threat Level	Estimated Cases & Attributable Deaths in US per Year
ESBL-producing Enterobacteriaceae	Serious	26,000 cases 1,700 deaths
MDR <i>P. aeruginosa</i>	Serious	6,000 cases 400 deaths
Carbapenem-resistant <i>Enterobacteriaceae</i> (e.g., KPC)	Urgent	9,300 cases 610 deaths
Metallo-β-lactamase- producers	N/A	Very rare

Cephalosporins and Gram-negative Coverage

- Second and third generation cephalosporins developed to extend coverage of Gram-negative pathogens including Pseudomonas
 - Extended spectrum β-lactamases (ESBLs) and AmpC (cephalosporinases) threaten empiric utility
 - Increased use of carbapenems (stable to ESBL and AmpC β-lactamase)
 - Emergence of KPC carbapenemase-producing organisms

Dramatic Increase in β-Lactamases

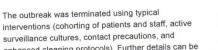
Shlaes et al., 2013

Outbreak of Carbapenem-resistant Klebsiella pneumoniae

RESEARCH ARTICLE

NOSOCOMIAL INFECTION

Tracking a Hospital Outbreak of Carbapenem-Resistant *Klebsiella pneumoniae* with Whole-Genome Sequencing


Evan S. Snitkin,¹ Adrian M. Zelazny,² Pamela J. Thomas,¹ Frida Stock,² NISC Comparative Sequencing Program,³ David K. Henderson,² Tara N. Palmore,²* Julia A. Segre¹*

The Gram-negative bacteria *Klebsiella pneumoniae* is a major cause of nosocomial infections, primarily among immunocompromised patients. The emergence of strains resistant to carbapenems has left few treatment options, making infection containment critical. In 2011, the U.S. National Institutes of Health Clinical Center experienced an outbreak of carbapenem-resistant *K. pneumoniae* that affected 18 patients, 11 of whom died. Whole-genome sequencing was performed on *K. pneumoniae* isolates to gain insight into why the outbreak progressed despite early implementation of infection control procedures. Integrated genomic and epidemiological analysis traced the outbreak to three independent transmissions from a single patient who was discharged 3 weeks before the next case became clinically apparent. Additional genomic comparisons provided evidence for unexpected transmissions routes, with subsequent mining of epidemiological data pointing to possible explanations for these transmissions. Our analysis demonstrates that integration of genomic and epidemiological data can yield actionable insights and facilitate the control of nosocomial transmission.

Wednesday, August 22, 2012

Scary KPC outbreak at the NIH

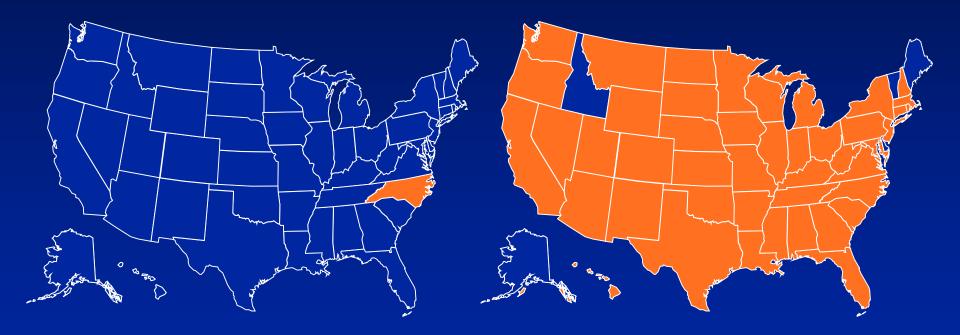
Today's Washington Post contains an article that will send chills down the spine of every hospital epidemiologist and infection preventionist in the world. It describes an outbreak of carbapenem-resistant Klebsiella pneumoniae (KPC) at the hospital of the National Institutes of Health in Bethesda. Over a 6month period last year, 17 patients became colonized or infected with KPC; of these 8 developed bloodstream infections. A total of 11 patients died; 6 of these deaths were attributed to the infection.

surveillance cultures, contact precations, and enhanced cleaning protocols). Further details can be found in a report in Science Translational Medicine (abstract here, full text requires subscription). This report outlines how the outbreak was able to be tracked using whole genome sequencing, which allowed the epidemiologists to determine that the entire outbreak could be traced to a single patient. Traditional molecular typing with PFGE would not have provided enough discriminatory power to do this.

KPC Kills 7th Person At NIH

09/15/12 04:48 PM ET

BETHESDA, Md. -- A deadly germ untreatable by most antibiotics has killed a seventh person at the National Institutes of Health Clinical Center in Maryland.


He was the 19th patient at the hospital to contract an antibiotic-resistant strain of KPC, or Klebsiella pneumoniae. The outbreak stemmed from a single patient carrying the superbug who arrived at the hospital last summer.

The paper reported the Minnesota boy's case marked the first new infection of this superbug at NIH since January.

Spread of CRE Across US -US Hospital Reports to CDC

2001

CRE cases reported to CDC

Centers for Disease Control and Prevention, 2013, 2014

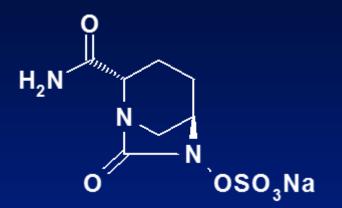
Combination of cephalosporin with a βlactamase inhibitor to protect the activity of the antibiotic

- A well proven and successful strategy with the penicillins
 - Amoxicillin-clavulanate
 - Ticarcillin-clavulanate
 - Piperacillin-tazobactam
 - Ampicillin-sulbactam

 Early β-lactamase inhibitors lack inhibitory activity against contemporary β-lactamases (KPC, AmpC) and metallo-β-lactamases such as NDM-1

β-Lactam-β-Lactamase Inhibitors

BL/BLI Combination	Company	Development
Ceftazidime-avibactam	Allergan/Pfizer	Approved
Ceftolozane-tazobactam	Merck	Approved
Meropenem-vaborbactam	Melinta	Approved
Imipenem-relebactam	Merck	Phase 3


Avibactam: A new inhibitor for Class A and C β-lactamases

Formerly known as AVE1330A or NXL104

Physicochemistry:

- Molecular weight: 287.23
- Chemical formula: C₇H₁₀N₃O₆SNa
- Sodium salt
- Soluble compound
- Stability in solution at room temperature

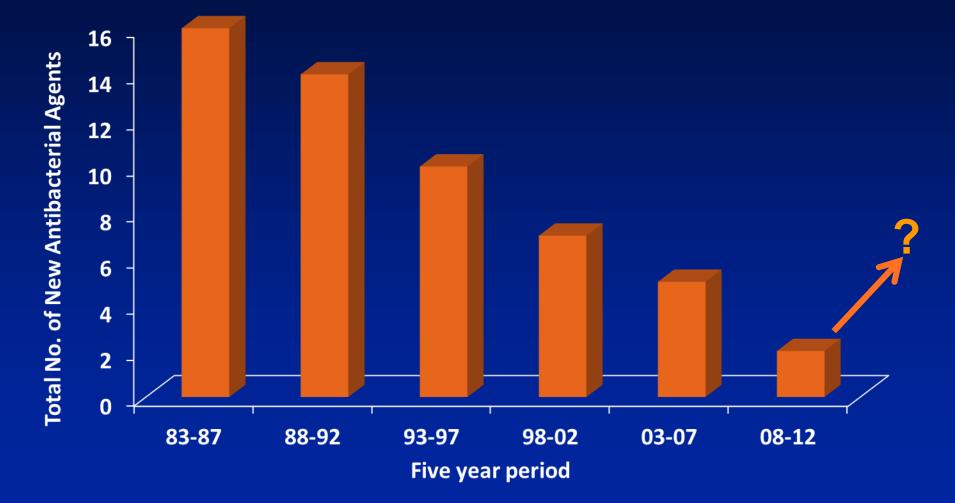
Parenteral administration

Avibactam (active enantiomer) 1,6-diazabicyclo[3.2.1]octane-2carboxamide, 7-oxo-6-(sulfooxy), monosodium salt, (1R,2S,5R)

Spectrum of Activity of Avibactam

β-Lacta	mase	Clavulanate	Tazobactam	Avibactam
	TEM, SHV and ESBLs	\checkmark	\checkmark	\checkmark
	CTX-M and ESBLs	\checkmark	\checkmark	\checkmark
Class A	PER, VEB, GES	\checkmark	\checkmark	\checkmark
_	КРС	X	X	\checkmark
Class B	IMP, VIM, NDM	X	X	X
	Chromosomal <i>Enterobacteriaceae</i> AmpC	X	X	\checkmark
Class C	Chromosomal Pseudomonas AmpC	X	X	\checkmark
	Plasmidic ACC, DHA, FOX, LAT, MIX, MIR, ACT	X	x	\checkmark
Class D	Penicillinase-type OXA-1, -31, -10, - 13	Variable OXA-1, -10	Variable	Variable OXA-1, 31
	Carbapenemase-type OXA-23, -40, - 48,-58	Variable	Variable OXA- 23, -48	Variable OXA-48

Expanded Spectrum of Activity Against Contemporary US CAZ-NS Isolates


			MIC ₉₀ (I	mg/L)
Organism	Phenotype	Ν	CAZ-AVI	CAZ
E. coli	All	2,767	0.12	32
	ESBL	328	0.25	>32
	All	1,847	0.5	32
K. pneumoniae	ESBL	296	1	>32
	Meropenem-NS	115	2	>32
E. cloacae	All	951	0.5	>32
	CAZ-NS	200	1	>32
P. aeruginosa	All	1,967	4	32
	CAZ-NS	330	16	>32

What Else is in the Gram-negative Pipeline?

Agent	Sponsor	Class	Target Pathogens
Eravacycline	Tetraphase	Fluorocyclic tetracycline	MDR Enterobacteriaceae, Acinetobacter
Plazomycin	Achaogen	Neoglycoside derived from sisomycin	MDR Enterobacteriaceae

Cefiderocol Shionogi Cephalosporin MDR Gram-negative

New Antibacterial Drugs Approved in the US per 5 year period (1983 – 2012)

Infectious Diseases Society of America

Ten new ANTIBIOTICS by 2020

What Factors Have Led to the Decline of Antibiotic Development?

Genomics Based Antibiotic Discovery in the 1990's

- Genomes of multiple pathogens sequenced to identify essential genes that lacked mammalian counterparts
- High throughput screens of existing compound libraries to identify "druggable" molecules that bound to or inhibited the target (enzyme)
- Compound libraries yielded 5-fold fewer hits than for other therapeutic areas
 - Few hits translated into lead candidates
- GSK Experience
 - 300 targets and 67 HTS screens (260,000 530,000 compounds)
 - Only 16 screens gave "hits" and 5 lead compounds
- No antibiotic developed by this approach made it to market

The Challenges of Genomics Based Discovery

Lack of chemical diversity among compound libraries

- Biased towards molecules meeting Lipinski's rule of five (chemical algorithm)
- Binding to or inhibiting cell free targets in a screen did not always translate into antibacterial activity (MICs)
 - Efflux and penetration barriers
- Compounds that inhibited single targets very prone to mutational resistance

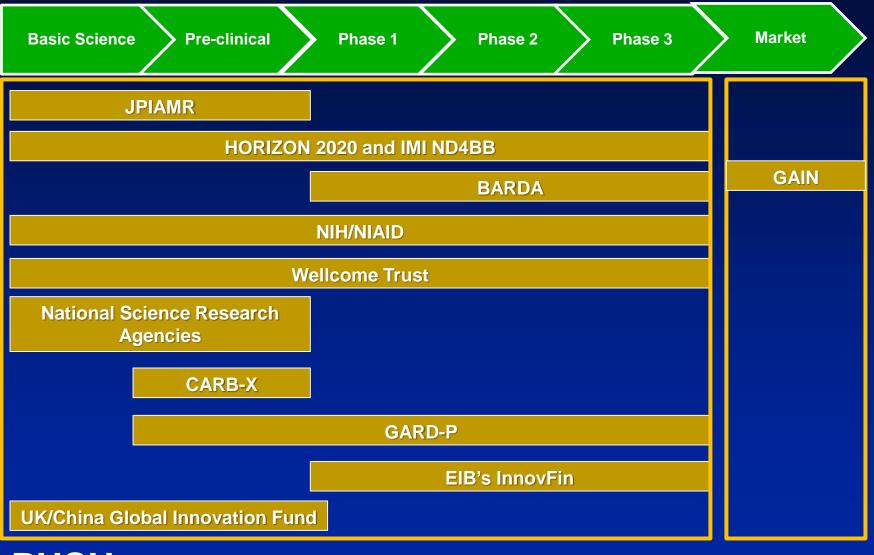
Antibacterial Drug Development: Other Recent Challenges

- Many bacterial infections becoming increasingly difficult to treat with existing agents
- Low returns on investment
- Restricted use on formularies/antimicrobial stewardship
- AST Device development
- Unpredictable and challenging regulatory pathways resulted in many companies exiting the field

What's Being Done About it?

- Food and Drug Administration (FDA) Safety and Innovation Act
 - Legislation reauthorizing the Prescription Drug User Fee Agreements (PDUFA)
 - Incentives to spur antibacterial and antifungal R&D
 - Provisions modeled after the Generating Antibiotic Incentives Now (GAIN) Act
 - Recognition of the serious problems posed by antibiotic resistance and the dry antibiotic pipeline

GAIN Act


- Title VII (Sections 801-806) of FDASIA provides incentives to develop new treatments for life-threatening infections caused by drug resistant pathogens
- Qualifying pathogens are defined by GAIN to include:
 - Multidrug-resistant Gram-negative bacteria
 - Pseudomonas aeruginosa
 - Acinetobacter
 - Klebsiella
 - Escherichia coli
 - Resistant Gram-positive pathogens
 - Methicillin-resistant S. aureus
 - Vancomycin-resistant S. aureus
 - Vancomycin-resistant Enterococcus
 - Clostridium difficile

Qualified Infections Disease Products (QIDP) Benefits

- Advancement of critically needed antibiotics
 - Eligibility for fast track status
 Priority review

 If approved, a five year extension of Hatch Waxman exclusivity

"Push and Pull" Incentive to Spur Antibacterial Drug Development

PUSH

PULL 42

Summary

- Antibiotics have been miracle drugs and have become victims of their own success
- Bacterial pathogens will continue to adapt and develop new mechanisms to "resist" antibiotics
- Pharma has responded to the MRSA challenge
- Gram-negative pathogens a present and future challenge
 - Several pipelines now include anti gram-negative agents
- Economic/investment challenges remain
- Wider acknowledgement of the challenges spurring initiatives here and in Europe to expedite antibiotic development